Antes de entrar en detalles hay ciertos conceptos que debemos tener en claro:
Inercia
La inercia es la propiedad de los cuerpos de no modificar su estado de reposo o movimiento uniforme, si sobre ellos no influyen otros cuerpos o si la acción de otros cuerpos se compensa.
En física se dice que un sistema tiene más inercia cuando resulta más difícil lograr un cambio en el estado físico del mismo. Los dos usos más frecuentes en física son la inercia mecánica y la inercia térmica. La primera de ellas aparece en mecánica y es una medida de dificultad para cambiar el estado de movimiento o reposo de un cuerpo. La inercia mecánica depende de la cantidad de masa y del tensor de inercia del cuerpo. La inercia térmica mide la dificultad con la que un cuerpo cambia su temperatura al estar en contacto con otros cuerpos o ser calentado. La inercia térmica depende de la cantidad de masa y de lacapacidad calorífica.
Las llamadas fuerzas de inercia son fuerzas ficticias o aparentes para un observador en un sistema de referencia no-inercial.
La masa inercial es una medida de la resistencia de una masa al cambio en velocidad en relación con un sistema de referencia inercial. En física clásica la masa inercial de partículas puntuales se define por medio de la siguiente ecuación, donde la partícula uno se toma como la unidad ():
donde mi es la masa inercial de la partícula i, y ai1 es la aceleración inicial de la partícula i, en la dirección de la partícula i hacia la partícula 1, en un volumen ocupado sólo por partículas i y 1, donde ambas partículas están inicialmente en reposo y a una distancia unidad. No hay fuerzas externas pero las partículas ejercen fuerzas entre si.
Trabajo y energía
El trabajo y la energía aparecen en la mecánica gracias a los teoremas energéticos. El principal, y de donde se derivan los demás teoremas, es el teorema de la energía cinética. Este teorema se puede enunciar en versión diferencial o en versión integral. En adelante se hará referencia al Teorema de la energía cinética como TEC.
Gracias al TEC se puede establecer una relación entre la mecánica y las demás ciencias como, por ejemplo, la química y la electrotecnia, de dónde deriva su vital importancia.
Fuerza y potencial
La mecánica de partículas o medios continuos tiene formulaciones ligeramente diferentes en mecánica clásica, mecánica relativista y mecánica cuántica. En todas ellas las causas del cambio se representa mediante fuerzas o conceptos derivados como la energía potencial asociada al sistema de fuerzas. En las dos primeras se usa fundamentalmente el concepto de fuerza, mientras que en la mecánica cuántica es más frecuente plantear los problemas en términos de energía potencial. La fuerza resultante sobre un sistema mecánico clásico se relaciona con la variación de la cantidad de movimiento mediante la relación simple:
Cuando el sistema mecánico es además conservativo la energía potencial se relaciona con la energía cinética asociada al movimiento mediante la relación:
En mecánica relativista las relaciones anteriores no son válidas si t se refiere a la componente temporal medida por un observador cualquiera, pero si t se interpreta como el tiempo propio del observador entonces sí son válidas. En mecánica clásica dado el carácter absoluto del tiempo no existe diferencia real entre el tiempo propio del observador y su coordenada temporal.
En mecánica clásica y mecánica relativista, mediante los conceptos de desplazamiento, velocidad y aceleración es posible describir los movimientos de un cuerpo u objeto sin considerar cómo han sido producidos, disciplina que se conoce con el nombre de cinemática. Por el contrario, la dinámica es la parte de la mecánica que se ocupa del estudio del movimiento de los cuerpos sometidos a la acción de las fuerzas. En sistemas cuánticos la dinámica requiere un planteamiento diferente debido a las implicaciones del principio de incertidumbre.
El cálculo dinámico se basa en el planteamiento de ecuaciones del movimiento y su integración. Para problemas extremadamente sencillos se usan las ecuaciones de la mecánica newtoniana directamente auxiliados de las leyes de conservación. En mecánica clásica y relativista, la ecuación esencial de la dinámica es la segunda ley de Newton (o ley de Newton-Euler) en la forma:
donde F es la sumatoria de las fuerzas y p la cantidad de movimiento. La ecuación anterior es válida para una partícula o un sólido rígido, para un medio continuo puede escribirse una ecuación basada en esta que debe cumplirse localmente. En teoría de la relatividad general no es trivial definir el concepto de fuerza resultante debido a la curvatura del espacio tiempo. En mecánica cuántica no relativista, si el sistema es conservativo la ecuación fundamental es la ecuación de Schrödinger:
Leyes de conservación:
Las leyes de conservación pueden formularse en términos de teoremas que establecen bajo qué condiciones concretas una determinada magnitud "se conserva" (es decir, permanece constante en valor a lo largo del tiempo a medida que el sistema se mueve o cambia con el tiempo). Además de la ley de conservación de la energía las otras leyes de conservación importante toman la forma de teoremas vectoriales. Estos teoremas son:
- El teorema de la cantidad de movimiento, que para un sistema de partículas puntuales requiere que las fuerzas de las partículas sólo dependan de la distancia entre ellas y estén dirigidas según la línea que las une. En mecánica de medios continuos y mecánica del sólido rígido pueden formularse teoremas vectoriales de conservación de cantidad de movimiento.
- El teorema del momento cinético, establece que bajo condiciones similares al anterior teorema vectorial la suma de momentos de fuerza respecto a un eje es igual a la variación temporal del momento angular. En concreto el lagrangiano del sistema.
Estos teoremas establecen bajo qué condiciones la energía, la cantidad de movimiento o el momento cinético son magnitudes conservadas. Estas leyes de conservación en ocasiones permiten encontrar de manera más simple la evolución del estado físico de un sistema, frecuentemente sin necesidad de integrar directamente las ecuaciones diferenciales del movimiento.
En física existen dos tipos importantes de sistemas físicos los sistemas finitos de partículas y los campos. La evolución en el tiempo de los primeros pueden ser descritos por un conjunto finito de ecuaciones diferenciales ordinarias, razón por la cual se dice que tienen un número finito de grados de libertad. En cambio la evolución en el tiempo de los campos requiere un conjunto de ecuaciones complejas. En derivadas parciales, y en cierto sentido informal se comportan como un sistema de partículas con un número infinito de grados de libertad.
La mayoría de sistemas mecánicos son del primer tipo, aunque también existen sistemas de tipo mecánico que son descritos de modo más sencillo como campos, como sucede con los fluidos o los sólidos deformables. También sucede que algunos sistemas mecánicos formados idealmente por un número infinito de puntos materiales, como los sólidos rígidos pueden ser descritos mediante un número finito de grados de libertad.
Dinámica de la partícula
La dinámica del punto material es una parte de la mecánica newtoniana en la que los sistemas se analizan como sistemas de partículas puntuales y que se ejercen fuerzas instantáneas a distancia.
En la teoría de la relatividad no es posible tratar un conjunto de partículas cargadas en mutua interacción, usando simplemente las posiciones de las partículas en cada instante, ya que en dicho marco se considera que las acciones a distancia violan la causalidad física. En esas condiciones la fuerza sobre una partícula, debida a las otras, depende de las posiciones pasadas de la misma.
Dinámica del sólido rígido
La mecánica de un sólido rígido es aquella que estudia el movimiento y equilibrio de sólidos materiales ignorando sus deformaciones. Se trata, por tanto, de un modelo matemático útil para estudiar una parte de la mecánica de sólidos, ya que todos los sólidos reales son deformables. Se entiende por sólido rígido un conjunto de puntos del espacio que se mueven de tal manera que no se alteran las distancias entre ellos, sea cual sea la fuerza actuante (matemáticamente, el movimiento de un sólido rígido viene dado por un grupo uniparamétrico de isometrías).
Dinámica de medios continuos y teoría de campos
En física existen otras entidades como los medios continuos (sólidos deformables y fluidos) o los campos (graviatorio, electromagnético, etc.) que no pueden ser descritos mediante un número finito de coordenadas que caractericen el estado del sistema. En general, se requieren funciones definidas sobre un dominio cuatridiomensional o región. El tratamiento de la mecánica clásica y la mecánica relativista de los medios continuos requiere el uso de ecuaciones diferenciales en derivadas parciales, lo cual ocasiona dificultades analíticas mucho más notables que las encontradas en los sistemas con un número finito de coordenadas o grados de libertad (que frecuentemente pueden ser tratadas como sistemas de ecuaciones diferenciales ordinarias).
Fuente:https://es.wikipedia.org/wiki/Din%C3%A1mica
No hay comentarios.:
Publicar un comentario